
echo & narziss

1

submitted by

Daniel Fischer

in partial fulfillment
of the requirements
for the degree of

Diplom-Mediengestalter

to Bauhaus-Universität Weimar,
Fakultät Medien
Weimar, May 13, 2004

supervised by

Hochschuldozent Ralf Homann

Prof. Dr. rer. nat. Bernd Fröhlich

2

»When Narcissus died the pool of his pleasure
changed from a cup of sweet waters into a cup of salt
tears, and the Oreads came weeping through the
woodland that they might sing to the pool and give it
comfort.

And when they saw the pool had changed from a cup
of sweet waters into a cup of salt tears, they loosened
the green tresses of their hair and cried to the pool
and said, ›We do not wonder that you should mourn
in this manner for Narcissus, so beautiful was he.‹

›But was Narcissus beautiful?‹ said the pool.

›Who should know better than you?‹ answered the
Oreads. ›Us did he ever pass by, but you he sought
for, and would lie on your banks and look down at
you, and in the mirror of your waters he would
mirror his own beauty.‹

And the pool answered, ›But I loved Narcissus
because, as he lay on my banks and looked down at
me, in the mirror of his eyes I saw ever my own
beauty mirrored.‹ «

Oscar Wilde, ›The Disciple‹

3

Table of Contents
1. Introduction...5
2. Background..6

2.1. Global Context..6
2.1.1. Computers, Video and Dance..7
2.1.2. Computer Vision..7
2.1.3. Open-Source/Free Software..9

2.2. Local Influences...9
2.3. Personal Background..10
2.4. This Paper...11

3. Goals..12
3.1. General Goals...12
3.2. Personal Expectations...12

3.2.1. Make a concentrated effort..12
3.2.2. Have a controlled situation...12
3.2.3. Advance the technology..13
3.2.4. Flabbergast the audience...13

3.3. My current view on these goals..13
4. Technology...14

4.1. GStreamer..14
4.2. Overview..15
4.3. The ›Pakt‹ framework...16

4.3.1. XML abstraction for the GObject model.........................17
4.3.2. Modular integration of third-party libraries.................17
4.3.3. Prototypical Access Clients...18

4.4. The ›Warsaw‹ library...20
4.4.1. Introduction..20
4.4.2. Processing models (filter types).....................................22
4.4.3. Thruputs and Bypass..24
4.4.4. Data Types...25
4.4.5. Properties (filter parameters)..26
4.4.6. Components integrated or developed...........................26

5. Application..30
5.1. Rectification...31

5.1.1. Displacement Maps..31
5.1.2. Calibration..31

5.1.3. Forward...32
5.1.4. Backward...33
5.1.5. Contrast..34

5.2. Binary Presence Image...34
5.2.1. Average/Difference/Threshold.......................................34
5.2.2. Shadow...35
5.2.3. Difference to known projection image..........................36

5.3. Further pixel-based analysis..37
5.3.1. Image Moments..37
5.3.2. Motion History Image...38
5.3.3. Edge Detection...38

5.4. Contour...39
5.4.1. Curvature...40
5.4.2. Local maxima of absolute curvature.............................40

5.5. Synthesis...42
5.5.1. cairographics..42
5.5.2. OpenGL and GdkPixbuf...42
5.5.3. Buffering in RAM...43

5.6. Outlook..43
6. Performance..44

6.1. Theme..44
6.1.1. Narrative...44
6.1.2. Interpretation..45
6.1.3. Representation..46

6.2. Realization..47
6.2.1. Technical Setup...47
6.2.2. Participants..48
6.2.3. Dramaturgy...48

7. Summary...51
7.1. A Generic Toolkit...51
7.2. Improvisation and Performance...52
7.3. Freedom and Constraints...52
7.4. Future Directions..53

8. References..54
8.1. Pakt/Warsaw dependencies..54
8.2. References to books and papers..54
8.3. Web Links..55

4

1. Introduction
In some ways, this is a project about Freedom.
Freedom, and what you make of it, has become a
focal point of my studies of Media Arts and Design at
Bauhaus-University Weimar. I was lucky enough to
find an environment where I could freely seek for
what it is that drives my work. I have not found it,
and hope I never will. Yet, I have learned how to
move in such a free space, how to use it for my own
good and the good of others. I have learned how to
use my talents, and how to extend my abilities,
within a liberal, encouraging and changing environ-
ment.

At the same time, this project is about constraints,
about external and internal forces that impose limits
upon that freedom. Time, for one part, seems to be
the most forceful constraint. There's never enough of
it, there's always so much that could have been done
given enough time.

The limits of the technology available to us is
another forceful constraint limiting our work.
Contrary to ever progressing time, though, out tools
can be changed. Because we made them ourselves,

and if we extend our technology we extend the
possibilities of our work.

Within this contrast of freedom and constraints I
like to place my work. For this is the same antago-
nism as the everlasting battle of artistic expression
and technical possibility, of vision and realization.

Consequently, most of my work deals with the de-
velopment of new tools. With the advent of affordable
computing power, the possibilities seem endless, no
matter which way you look or which goals you want
to achieve. These possibilities, though, are of a
purely theoretical nature. What we can do with
today's software seems to have no relation to what we
could do theoretically. This is why the practice of my
work has shifted more and more to programming,
even while the goals I want to achieve remain of a
dedicatedly artistic1 nature.

1 The proper term here would be gestalterisch, for which
there is no direct English translation.

5

2. Background
Every work stands within its own context, and
without at least shallow knowledge of that context, it
cannot be understood. This is especially true for a
project that, like echo & narziss, is primarily defined
by means of its extension in time, as it tries to
progress towards general goals that cannot be
reached within a single concentrated effort. While I
have set out reachable goals for the project itself, if
only to enable my supervisors to judge the progress
made, the long-term goals remained in focus
throughout the working period. These goals (and
thereby this project) are to be seen in context of some
global developments affecting our use of computing
technology in general, in relation to the local
background posed by my studies of Media Arts and
Design in Weimar, and personally in line of my
personal abilities, working style and history.

2.1. Global Context
Even as computers in the form of gray boxes and
laptops have largely pervaded our daily work and
live, they remain mysteries to most of us. We handle
them mostly through an established set of interfaces
consisting of Keyboard, Mouse, Windows, Menus
and so-called ›Dialogs‹. While the commercial
success and widespread use of this interface might
support the initial vision that this is an interface
everybody can understand and use, I believe it's not
the end of the story. The possibilities of a ›normal
user‹ remain too limited to the constraints imposed
by developers, the style of interaction too predefined
by the application's design, as to say that computers
are used as the generic all-purpose information
processing tools they could be.

Today, we have to submit to the logic of the com-
puter, or at least to the thinking of the application
developers. Instead, I envision the computer sub-
mitting to our logic, adapting to our own personal
working style. This would include a general invisi-
bility of the interface whenever we don't need it,
coupled with availability when we do. It would in-

6

clude us being able to teach the computer new stuff,
so that the computer becomes the one executing
repetitive tasks, and not us. And, it would include
the computer being aware of its real-world
environment, as to note when an interruption can be
appropriate, to judge our current working condition
and to respond to various other external situations.

2.1.1. Computers, Video and Dance

Video technology had its influence on contemporary
dance since its general availability in the sixties.
With the advent of affordable hardware capable of
processing video in real-time, the use of video
technologies in dance has undergone a major shift,
away from using canned video sequences or mere
one-to-one live transmission, towards using the
potential of computers in both analysis of performer
motion and live generation (synthesis) and/or
manipulation of video material visible to the
audience.

The area of contemporary dance provides rich
grounds for experimenting with computer vision
and real-time video synthesis technologies, and the
aesthetics enabled by those. The intriguing ex-

perience of watching a person move skillfully can be
extended and amplified using near-real-time
displays of visual analysis, and coupling of the
performer's motion to the production of sound and
accompanying imagery. Within this area of
analysis/synthesis, one can find large potentials for
artistic expression, as I try to prove with this work.

As of lately, many dance companies2 have begun
working with computer scientists and exploiting the
possibilities that this combination can offer. With
increasing spread of and accessibility to these
technologies3, I expect to find more and more such
experiments and hopefully also productions that
exceed the experimental stage, and harness the
possibilities of technology to both extend the realm
of artistic expression and amplify the audience's
experience in watching dance.

2.1.2. Computer Vision

The possibilities of applying computer vision algo-
rithms in arts, and general human-computer inter-

2 For example, [TroikaRanch] and [Palindrome].

3 See [Jitter], [EyeCon] and my own Warsaw and Pakt (4).

7

action, are vast. With them, computers can be made
more aware of their environment - even simple
information like approximately how many people
are around the room (any at all?) could make a huge
difference in user experience when integrated with
the overall interface. Probably more important than
awareness about the environment, cameras can be
used as input devices, allowing the computer to
know where the user is looking and/or pointing at.
Gesture recognition, shape recognition and shape
tracking can prove to be valid technological bases for
new interaction methods, as they don't require the
user to use any kind of special tools but his own
body. Combined with other emerging technologies
like natural language understanding, such methods
have the potential to thoroughly change our current
modes of interaction with machines.

It has been a project goal to evaluate some of the
currently available computer vision tools for their
applicability within a more playful context - that of a
contemporary dance performance. Within this
context, the performer becomes the primary ›user‹
within a reactive space. The potential of such a re-
active space can be estimated by the successes of for

example the experimental performances of David
Rockeby with the ›Very Nervous System‹4 or Sony's
›EyeToy‹-based PlayStation games5.

The ›EyeToy‹ case exemplifies another factor that
plays an important role within this work: the avail-
ability of increasingly powerful commodity hard-
ware that has by now reached a stage where complex
video processing and analysis becomes possible with
a standard desktop workstation, with even enough
processing power left to do other things. In fact we
can say that the speed of our hardware doesn't pose
the major limits any more. What remains to be
solved for computer vision technology to enter the
mainstream of user interface design are mainly
problems of accessibility and integration.

4 [Rockeby]

5 [Sony]

8

2.1.3. Open-Source/Free Software

Part of the accessibility problem is addressed by the
use of Free/Libre/Open-Source Software within this
project and within my work in general. While an
Open-Source license does of course not guarantee
that a software is accessible in a sense that it is
understandable and user-friendly, it does guarantee
access to and availability of the software's source
code and enables further improvement and
modification of the software6.

As a large set of computer vision algorithms is freely
available, their integration into an open-source
media processing environment seems a logical step
forward. An effort has been taken to do so, and
indeed a significant number of algorithms available
from the OpenCV7 library have been integrated into
the Warsaw framework (see 4.4.6) as part of the
project.

6 For a detailed account of the benefits of Open-Source,
consult [Raymond00].

7 [OpenCV]

2.2. Local Influences
In retrospect, the most important change triggered
by my studies is a shift in my conception of art.
Shortly after I came to Weimar to study, I had de-
fined my alleged subject, which I then translated as
›Media Design‹ (see below), as follows:

1. giving form to content of some medium; includes
layout, screen design, web design, video and
audio production.

2. integrated (›holistic‹) engineering of some in-
formation service; this includes a fair amount of
interface design with lots of thoughts spent on
efficiency, usability and accessibility as well as on
the structure of the underlying content.

Near the half of my studies, I had extended that
definition with an important third part:

3. the development of new media; the invention of
new forms of transmitting information and new
forms of interactivity. As the computer in-
tegrates more and more traditional forms of
broadcast or general communication, truly un-
precedented ways of getting the content from the

9

sender to the receiver can evolve.

By now, near the end of this personal era, I would like
to extend the definition by another perspective, but
that task turns out to be increasingly difficult. My
shift in perception of the profession can probably
best be observed with my adoption of a different
English translation for the official term
›Mediengestaltung‹: Media Arts and Design.

I will not extend this argument into a general dis-
cussion about ›What is Art?‹ Instead, I will just
mention that I regard the area of artistic work as
conducting research for the more applied area of de-
sign. One of the primary differences between Art and
Design, then, could be that any work classified as
artwork is more free from commercial constraints
and from any strict a-priori definitions of the work's
outcome. It should be clear that this doesn't make
either of the perspectives any less relevant than the
other. Personally, I strive to achieve a sound balance
between the two, by trying to finance free art
projects from applied design/technology work in the
industry.

2.3. Personal Background
I regard my ›core‹ competences to be a multitude.
During the five years of my studies, I had the chance
to play with various media technologies, to develop
concepts for very different kinds of projects (and
implement them), and to cooperate with a wealth of
neighboring professions.

I reckon as one of my central competences the ability
to mediate between artistic/design-oriented and
technical professions. While programming a lot
myself, I do not feel systems architecture to be one of
my major goals. Likewise, while creating visual
designs myself, I do not hold myself to be an artist or
designer in any conventional meaning of the word.

My skill, then, is to know enough about both (or all
involved) perspectives to develop concepts spanning
the arts/technology gap, to be able to understand the
processes and designs involved, to judge and direct
the work of others in their special areas, to ›help out‹
on various issues myself, and finally to keep an
overview throughout the project. In short, I don't
care as much for a deep than a broad understanding of
things.

10

Still, I have of course developed some more concrete
skills. I code enough to regard programming as my
primary tool for expressing and implementing my
ideas, and to be able to implement most of my
concepts myself at least in a prototypical or
›sketched‹ fashion (in C/C++ and Java). Meanwhile, I
collected an amount of experience in event orga-
nization and technical implementation (lights,
sound, cabling, crowd management). Also, I feel that
I know a lot about visual design, issues of form, color
and typography. I run a set of Internet servers in
varying contexts, use Linux as my primary operating
system since about two years, and master most of the
web languages (HTML/CSS, XML, PHP, SQL, XSLT)
fluently.

During the major part of my studies (during the last
ca. 3 years) I have experimented a lot with optical
tracking technology and motion image synthesis in
artistic and playful contexts like interactive
installations and dance performances.

2.4. This Paper
This paper documents primarily the technical results
of the process that finally leads to the presentation of
a dance performance involving most of the
developed software. As the performance itself is yet
to take place as this document is being written, in
some areas it necessarily remains vague. The
documentation will be complemented with a video
recording of the performance, which should, as I
hope, clear up most remaining questions.

It should also be noted that this paper does not
constitute a strictly scientific work. Many experi-
ments that ultimately led to the results presented
here are left out, as are many details of the imple-
mentation or algorithms used. As the work mostly
integrates techniques already presented elsewhere,
including all the implementation details would un-
necessarily bloat this document. The contribution of
my work is to be found in the bridging between the
theoretical possibilities of computer vision in
human-computer interaction and the concrete
problems of conducting a real-life performance that
realizes some of these possibilities.

11

3. Goals
As the goals within this project have not substan-
tially changed over the project period, I am repro-
ducing here (from the following paragraph up to
section 3.2.4) the list of goals that I had mentioned in
an initial project outline, modified only in terms of
internal references and some nomenclature:

3.1. General Goals
The most important goals of the project can be
summed up as follows:

• to evaluate the use of video analysis/synthesis
software in the realm of contemporary dance.

• to verify utility of the Pakt framework in a per-
formance context.

• to (further) explore the aesthetic properties and
possibilities of direct graphics programming.

• to broaden my knowledge about these subjects.

3.2. Personal Expectations
I regard my final work as the possibly last chance to
work freely and exclusively on a certain set of own
ideas. I want to act out and use that freedom
intensively, and ›finally do what I so long wanted to
be doing‹, such as:

3.2.1. Make a concentrated effort

While I have gained some experiences in cooperating
with contemporary dance performers, they all stem
from highly experimental, ad-hoc projects. I yearn
for the possibility to work with performers over a
slightly longer period of time than just a few days.
The current time frame suggests two blocks of
rehearsal with both performer and audio artists (each
lasting at least a weekend) over a quarter-year
period8.

3.2.2. Have a controlled situation

Most of my past installations using optical tracking
took place in relatively unforeseeable, changing
conditions. The chance to apply the same (or

8 Obviously, the original time frame suggested that.

12

extended) techniques in a controlled situation
(especially in regards to lighting conditions) seems
intriguing. A stage setting can easily provide a high
level of control.

3.2.3. Advance the technology

I want to take the specific demands of the perfor-
mance as a chance to advance the Pakt framework
(see 4.3), and extend and mature my core set of video
processing tools. Additionally, some more specific
solutions will have to be developed, extending my
knowledge about computer vision and motion image
synthesis.

3.2.4. Flabbergast the audience

An important aim is to create an intriguing aesthetic
experience, and to touch the hearts of people. This has
little to do with the actual technology implemented,
but very much with how it is being applied.9

9 To detail this goal: The technology should extend and
amplify the audience's experience of watching a
performer dance, as to enrich the audience within their
personal universes.

3.3. My current view on these goals
Looking back at these definitions of goals set out at
the beginning of the project, I am relatively content
with the outcome as it is presented in this docu-
mentation. While some parts of the personal
expectations could not be fulfilled (most notably, no
rehearsal including the dancer has been conducted
yet, making it impossible to incorporate her
feedback directly within this project), I think I have
made some significant steps forward in the direction
I set out for.

While the initial goals have been deliberately for-
mulated in a scalable way to accommodate for un-
expected obstacles on the way (of which there were
quite many), I like to say that I have reached or ex-
ceeded the most important of them, especially in the
area of technological advancement of the Pakt
framework and the set of processing tools.

But please draw your own picture.

13

4. Technology 4.1. GStreamer
GStreamer is an open-source ([LGPL]) project that
implements a graph-oriented media processing
framework for the GNU/Linux architecture. It is
based on the widespread GObject/glib/GTK libraries,
and like those, is implemented in plain C following
the object-oriented programming paradigm.
GStreamer in its current incarnation (version 0.8) is
relatively stable, enjoys a very active development
community, and is in the process of being ported to
both Mac OS X and Windows. It has been chosen as
the default media infrastructure for the GNOME
desktop environment, and is being considered for
KDE as well.

Graph-oriented media processing models follow the
idea that complex processing tasks can be achieved
by combining simple, reusable elements into
›processing pipelines‹. A single component has a
defined interface, consisting of a number of inputs
and outputs, media formats it can handle, and
parameters that control the encapsulated algorithm.

14

Such a model allows for rapid prototyping and ex-
perimentation with arbitrarily complex setups.
Similar models have already been implemented (or
are in the process of being implemented) by such
prominent representatives of the software industry
as Microsoft [DirectX], SGI [libdm], Be [MediaKit]
and the X Consortium [MAS]. With audio synthesis,
the approach seems a natural fit to conventional
hardware-based setups, so one can find it imple-
mented by a few major audio applications (eg,
[Reaktor]). Additionally, the media arts community
displays widespread use of software exhibiting very
similar properties for ›real-time‹ interactive installa-
tions and performances: Cycling74's MAX/MSP and
[Jitter], [Isadora] and [Keyworks] can serve as
examples here. Finally, within the video effects arena
one can find various examples of the model, for
example [Combustion] and [Houdini].

4.2. Overview

I have developed two integrative software systems
that both interface to the graph-based media
processing platform GStreamer (see 4.1), but from
two sides: Pakt integrates GStreamer, GTK+ and other
libraries into a high-level XML-based model daemon
that allows

1. access for various network clients to setup, run
and manipulate a server-side GStreamer pipeline
(4.3.1), and

2. construction of GUI clients for remote control of
such a server-side pipeline (4.3.3).

15

Image 2: Pakt and Warsaw integrate other libraries with
GStreamer from two different sides

Pakt Warsaw

GStreamerGTK+

Graph

Canvas

OpenCV

Cairo

FFMpeg

OpenGL

other...

Image 1: Graph of an example GStreamer pipeline

Warsaw, on the other end, integrates various third-
party signal and image processing libraries for use as
GStreamer elements. A wealth of such libraries is
available as Free Software, and Warsaw enables
arbitrary combination of processing algorithms
from different sources by wrapping their function-
ality into the well-defined framework of GStreamer
components.

4.3. The ›Pakt‹ framework
I have started development of the ›Pakt‹ framework
in June 200310, originally to allow network access to
setup and manipulate server-side GStreamer
pipelines. Since then, Pakt has evolved to a generic
XML serialization/deserialization and network access
library for the GObject model. Various libraries based
on that model have been integrated in an
experimental Pakt module called ›Glasnost‹, mainly
to enable construction of prototypical GUI-driven
control clients (see 4.3.3).

I will not describe the functionality of Pakt in great
detail here11, but only give a short example-based
introduction to the basic idea.

10 Following the strict definition of a graduation project by
its extents in time, this excludes Pakt from being a
direct part of my diploma project. It should be noted,
however, that Pakt forms the basis of the tools developed
in course of this project, and significant modifications
and improvements to Pakt have also been made during
the diploma period.

11 See the Pakt Accessor's Manual on the accompanying
CD-ROM.

16

4.3.1. XML abstraction for the GObject model

A Pakt server maintains a local object hierarchy and
allows network clients to read and manipulate an
XML representation of that model. A client can
request arbitrary fragments of the hierarchy. For
example, the pipeline depicted in Image 1 repre-
sented as XML with a depth of one:
<gst:thread name="thread0" priority="NORMAL"
 state="STATE_PLAYING">
 <gst:videotestsrc name="videotestsrc0"/>
 <gst:i420split name="i420split0"/>
 <gst:average name="average0"/>
 <gst:difference name="difference0"/>
 <gst:graytoi420 name="graytoi4200"/>
 <gst:xvimagesink name="xvimagesink0"/>
</gst:thread>

(result of a <get target=”/thread0” depth=”1”/> request on the
example pipeline)

One of the elements of that pipeline will be repre-
sented as:
<gst:average name="average0"

bypass="wConverterBypass_process"
roi="" mask="255" weight="0.010000"
state="STATE_PLAYING">

 <gst:pad name="sink"/>
 <gst:pad name="src"/>
 <gst:pad name="thru"/>
</gst:average>

(result of a <get target=”/thread0/average0” depth=”1”/> request on
the example pipeline)

A simple performance interface running on the same
or a different computer could provide the user with a
set of sliders and other controls for the parameters of
a specific processing pipeline. When the user
modifies one of the controls, the client can
communicate the update in the form of simple set
messages:

<set target="/thread0/threshold0/threshold"
 value="87"/>

The client can also register to receive updates
whenever a parameter changes:

<monitor source="/thread0/threshold0/threshold"
 destination="/foo"/>

Details of the Pakt protocol can be found in the ac-
companying ›accessor's manual‹12.

4.3.2. Modular integration of third-party libraries

Pakt integrates other libraries (like GStreamer and
GTK) in the form of modules that provide the bind-
ing from an XML namespace's allowed element
names to wrapper classes for the library. The func-
tionality of a Pakt server (or Pakt-based client) can be

12 Included on the accompanying CD-ROM.

17

defined at calling time (and even run-time) by
specifying which modules to load. The same pro-
gram (paktd/paktc) can at one time be the wrapper to
execute a GStreamer pipeline, and at another run a
GUI client to control such a pipeline.

4.3.3. Prototypical Access Clients

Three proof-of-concept clients utilizing the Pakt
framework have been implemented. All of them work
by loading specific Pakt modules needed to run the
client, requesting a copy of the currently running
pipeline from a Pakt server, transforming the
received XML with an XSLT stylesheet and in-
stantiating the resulting XML to display a GUI win-
dow with the relevant controls. Apart from extend-
ing the set of Pakt modules (in this case, for GTK,
Graph Visualization and simple MIDI messages), no
actual programming was involved in the con-
struction of these clients13. Their core functionality
can be found in the respective XSLT stylesheets (to be
found in the accompanying code archive).

13 In case of the Generic Controller, some objects linking
the server-side parameters to client controls have been
written; by now, this functionality could be replaced
using more generic mechanisms.

4.3.3.1. Generic Controller

The generic controller application connects to a Pakt
daemon running on a possibly remote host, and
transforms the XML representation of the running
GStreamer pipeline into a model of a GUI window
with controls for all the properties of the pipeline's
elements, and instantiates that model. The controls
are connected to the server components bidirection-
ally, that is, they will update the server-side proper-
ties when they are changed, and likewise display the
new value when the original property is changed
(from another client, some other external controller,
or by the element itself).

18

Image 3: Screenshot of the generic Pakt/GStreamer client

4.3.3.2. Graph Visualization

The graph visualization client transforms the server-
side pipeline to a set of GNOME Canvas14 elements in

14 [libgnomecanvas]

a GTK window. The Canvas elements are enclosed by
special invisible node and edge elements that
iteratively determine the graph layout based on a
simple two-dimensional force-driven layout
algorithm15.

4.3.3.3. Midi Dial Configuration

In addition to the two relatively generic clients de-
scribed above, a prototypical example client for a
very specific application has been developed. As I
own a Doepfer PocketDial, a hardware box with sixteen
rotary encoders sending MIDI messages, I have
started to implement a simple MIDI module for Pakt.
To connect the elements representing the dials on
the box to parameters of the pipeline, I have
developed a simple client that will open a window
with a button and text-entry widget for each dial,
connect to the server to receive a list of valid
parameters and provide that list as a pop-up menu
for each dial. When a specific parameter is chosen
from the menu, the corresponding dial will be

15 Also called spring-graph, for example, see
[Golovchinsky95]. The graph layout algorithm is
implemented in the graph submodule of glasnost.

19

Image 4: Screenshot of the graph visualization client showing an
example GStreamer pipeline

connected to that parameter. The text entry widget
allows setting of the step size, the value by which
each tick of the dial will in- or decrease the respective
parameter.

4.4. The ›Warsaw‹ library

4.4.1. Introduction

The Warsaw library enables easy integration of third-
party image processing libraries into GStreamer. It's
basic function is to separate the processing model of a
component from the data representation. This way,
the library can provide base classes for various
processing models and wrappers for specific data
types, which a single component can then use
together to produce a specific processor for a specific
type of data. By using Warsaws functionality for
encapsulating the details of the GStreamer format
negotiation and adapting the proprietary data types
of some integrated library, an actual filter instance
that calls a library function with a certain set of
parameters becomes a trivial piece of code16.

4.4.1.1. GObject to C++

The GObject model implements the object-oriented
programming paradigm in plain C. While this has
some obvious advantages (namely portability and

16 For example, see the cvBlur element in the code archive.

20

Image 5: Screenshot of the MIDI Dial configurator

language binding support), it also has one important
disadvantage: object-oriented (OO) features
(inheritance, polymorphism, virtual functions, etc)
are not directly supported by the language syntax
and therefore harder to follow, require more typing
and the code is harder to understand. The C++
language does support the OO paradigm within its
syntax, and thus is a superior choice in a project that
doesn't need language bindings and high portability
support. As Warsaw is for supporting plug-in
development, the language binding argument is
negligible: plug-ins are accessed via the defined
GStreamer plug-in API, which is obviously
supported by Warsaw-derived elements. The
portability argument remains, but C++ seems well
supported on all major platforms that qualify for use
in video processing.

Warsaw uses C++ primarily to have a nice structure
for deriving new Elements. Additionally, a specific
C++ feature (template classes) is used to separate the
processing model from the data representation (see
below). Within a new element, one is free to use C++
features for substructures, or stick with plain C,
thanks to the fact that C++ is ›only‹ an extension to C.

4.4.1.2. Filter types as base classes

Warsaw implements a range of filter types as base
classes for new elements. These filter types represent
common processing models and can be chosen to fit
the processing task at hand. If a new filter doesn't fit
any of the implemented filter types, it is still easy to
derive a new element that will.

This model has the obvious advantage that a specific
processing model is implemented only once, at a
central location. Features that should be pervasive to
all filters following a certain processing model, and
indeed the major part of the interface to GStreamer's
plug-in architecture, is implemented there. The
Bypass properties and the idea of Thruputs (see 4.4.3)
are examples of such features. If the idea for such
features changes or is extended, or if the GStreamer
model changes, it is easy to adapt the whole set of
elements by modifying the base classes17.

17 Note that, of course, this behavior follows directly from
the OO programming paradigm, and as such it could have
been implemented with the GObject model. See 4.4.1.1 for
reasons for the choice of C++ over C.

21

4.4.2. Processing models (filter types)

As described above, one of the primary features of
the Warsaw library is that it separates the processing
model (filter type) from the representation of the
data to be processed (data type). A new element is
implemented as a combination of a filter type (it's
template base class) and a number of data types
(template arguments). This way, once a certain set of
each is implemented, one can derive new elements as
arbitrary combination of those, and concentrate on
the actual processing to be done. When integrating a
third-party library, once the data types used by the
library function are integrated, the creation of a new
filter that wraps a library function becomes trivial.

While filter types implement the processing model
and interface to GStreamer's chain/loop/get-style
scheduling paradigms, data types wrap the in-
coming and outgoing raw data buffers to specific
data representations (eg., image structures used
within a certain library) and interface with the ›caps
negotiation‹ part of GStreamer, that is, they describe
the content of the buffers in a way GStreamer can
understand, to allow for the complex format

negotiation between the elements to be connected.

This section describes the filter types (base classes)
currently implemented in the Warsaw library. Note
that I do not attempt to cover all possible processing
models that could be implemented with the
GStreamer infrastructure, but only a very basic set of
important models.

4.4.2.1. Producer

The Producer class implements a com-
ponent that emits buffers of a certain
format. It has exactly one output. It can be

used for both elements that produce data ›out of
nothing‹, like a test image generator, and elements
that interface to some external sources (like
hardware interfaces, or data stored on disk).

4.4.2.2. Filter

The basic filter type is an element that has
exactly one input of a certain data type
and exactly one output of the same. It is

used for implementing strictly ›in-place‹-style filters
that only modify part of the received data, such as a

22

text overlay. It can also be used for ›consumer‹-type
elements (such as a video display component or a
network sender) that provides a Thruput of the
(unmodified) data, so that it can be subjected to
further processing.

4.4.2.3. Converter

Probably the most common processing
model, a Converter is an element with one
input and two outputs, where one of the

outputs provides the identity of the data received on
the input (is a Thruput). The other (main) output
delivers data in the same format, but with modified
content. It is used for all ›out-of-place‹-style filters,
those that touch each part of the input data anyhow,
so the additional copy makes no difference in
processing time. In other words, the Thruput feature
comes at close to no cost and can thus be
implemented for all components of this type.

4.4.2.4. Transverter

A Transverter element is similar to the
Converter model but differs in that the
main output format can be different from

the input format. The Bypass mode cannot be
generically implemented with this kind of element,
and additional logic to adapt the output and input
formats is required.

4.4.2.5. Mixer

The Mixer filter type is used for compo-
nents that join two streams of data of the
same format. It has exactly two inputs and

three outputs. Two of the outputs provide the input
material (are Thruputs), the third (main) output
delivers the mixed signal.

4.4.2.6. Inserter

The Inserter model is similar to the Mixer
type in that it again joins two data
streams. With Inserters, the streams can

be of different format though, and Inserters will not
provide a copy of the first (›master‹) input, but will
render data from the second (›slave‹) input unto the
first (insert the slave stream into the master stream).

23

4.4.2.7. Other/more complex processing models

As you can see by looking at the source code18 for the
base classes described here, they are not very
complicated. Likewise, implementing other types of
processing models is not hard. Warsaw is, in its
current state, still limited to a fixed number of in-
puts/outputs and thus it is impossible to implement
some kinds of elements that require a variable
number of connections without modifying
libwarsaw itself. Yet, for other component types with
a fixed number of connections, implementation is
near-trivial.

4.4.3. Thruputs and Bypass

There are two kinds of features implemented in all
filter types whose processing model allows them:
Thruputs and Bypass mode.

›Thruputs‹ incorporate the idea that while a com-
ponent of course usually has a primary function and
thus a primary data output, the user might still be
interested in the unmodified data. For example, a
user might want to scale down a high resolution

18 On the accompanying CD-ROM

video stream for efficiently finding the rough
position of a large object, but then crop the
bounding rectangle of that object from the original
material for further, more detailed analysis. For filter
types that copy the data while processing, Thruputs
can be provided without requiring any additional
processing power, thus they are implemented in the
base classes that come with Warsaw (namely,
Converter, Transverter, Mixer and Inserter).

›Bypass mode‹ enables the user to temporarily turn
off a certain component. While of course the
processing graph could be modified to insert or
delete a certain element, this usually involves at least
pausing the processing for a noticeable period of
time. When in bypass mode, a component will not
actually do any processing, but pass the input
buffers unmodified to its output. Bypass mode is
implemented for all processing models that can
support the idea: Filter, Converter and Inserter. In case
of a Converter in bypass mode, on receiving of an
input buffer it will check if the Thruput is connected
to another element; if it is connected, the data will be
copied and passed on to both Thruput and Output, if
not, it will be routed straight to the Output.

24

4.4.4. Data Types

Several basic and some more specific data types have
been implemented to allow for an easier access to
buffer data, while retaining compatibility with
existing GStreamer plug-ins where possible.

Most mentioned video types exist in versions for
fixed and variable sized streams. With a variable-
sized video stream, every frame can have different
dimensions. Width and height, as well as position in
a possible original stream, are prepended to each
buffer as 32bit integers. As this functionality is
wrapped in the data type classes, components that
don't care about a constant size can handle both
variable and fixed video.

Some of the data type classes adopt the stream to
proprietary data structures for some specific library
(GdkPixbuf, IplImage). This is done by allocating a
structure header once during format negotiation,
and setting of the data pointer when a new buffer is
received. The component can then directly use the
structure to invoke respective functions of the
integrated library.

Data Type Description

RGB 3-Channel, 8-bit red/green/blue packed
video

RGBA 4-Channel, 8-bit red/green/blue/alpha
packed video

I420 3-Channel, 8-bit, 2x2 subsampled YUV
video

Y800 8-bit grayscale video

NChannelCV 1 to 4-Channel, 8-bit generic video
wrapped to IplImage structures for
OpenCV.

generic video n-Channel, 1/8/32-bit integer or 32-bit
floating point video

generic CV based on generic video, wrapped to
IplImage structures for OpenCV

GdkPixbuf based on RGBA, wrapped to GdkPixbuf
structures

Point Data Variable-width, 2 line, floating point for
storing tracking points (the lines
consisting of x and y, respectively)

Contour Data Variable-width, 2-5 line, floating point for
storing contour data (the lines consisting
of x,y, and optionally first, second and
third derivation, respectively)

Table 1: Data types currently implemented in Warsaw

25

4.4.5. Properties (filter parameters)

As most components in video processing not only
act on the pure data, but incorporate a set of pa-
rameters controlling the algorithm, there has to be a
way to set (and get) those parameters during setup of
a processing pipeline, as well as at run-time.
GStreamer elements use the more generic GObject
Properties to define such parameters by their name,
type, defaults, valid values (ranges/enumerations)
and short description. Warsaw wraps this concept
into C++ classes and thereby allows for very easy
definition and manipulation of filter parameters. A
range of property types has been implemented, as
listed in Table 2.

Class name Description

wFloatProperty floating-point value with validity
range

wDoubleProperty double-precision floating-point
value

wIntegerProperty integer value with validity range

wBooleanProperty boolean (true/false) value

wStringProperty string value

Class name Description

wEnumProperty Enumeration value with list of
allowed values

wFloatArrayProperty list of floating-point values

wPointerProperty generic C pointer value

Table 2: Property types implemented in Warsaw

4.4.6. Components integrated or developed

Over the course of my diploma period, I have created
nearly seventy GStreamer elements using the
Warsaw library. The purpose of most should become
obvious from the short one-line description below.
The functionality of the more complex plugins will
be described in chapter 5. For reasons of
completeness, I am listing all created plugins here,
grouped by the containing module (which is defined
mostly by the libraries integrated with that module).
Please consult the accompanying source code
archive (and gst-inspect, if you have installed the
plugins) for details.

26

4.4.6.1. cv

The cv module integrates functions from the
[OpenCV] library, providing various basic and some
more advanced facilities for analyzing video.

Component Status Description

adaptive-
threshold

good adaptive binary threshold

addup fair add up (and clip) all channels
of rgb(a) video into grayscale

average good running average

blur fair smooth image

camshift fair CamShift algorithm

canny good Canny edge detection

contour fair finds the largest contour in
binary image

contourpoints exp. find weighted curvature
minima/maxima between zero
crossings

curvature fair calculates L1 curvature for
chain

difference good calculate pixelwise absolute
difference

dilate good dilate image

Component Status Description

disttrans fair distance transform

erode good erode image

flip good flip (mirror) image
horizontally or vertically

hsv good converts RGB to HSV

matte fair extracts matte by alpha mask

mhi good calculates motion history
image

moments fair calculate contour moments
and derive centroid and
principal axes

multiplys good multiply with scalar

pyrdown fair performs downsampling step
of Gaussian pyramid
decomposition

pyrup fair performs upsampling step of
Gaussian pyramid
decomposition

scalecontour fair scale/shift contour

setchannel fair set a channel of packed video

threshold good binary threshold

Table 3: Components in the ›cv‹ module

27

4.4.6.2. rectify

The components found in the rectify module im-
plement the functionality for restoring the originally
projected image from a distorted version as
perceived by the camera (described in 5.1).

Component Status Description

derectify fair reverse-rectify image based on
stored calibration data

rectify fair rectify image based on stored
calibration data

rectify-
calibrate

fair round-trip calibrate for
rectification

rectify-
calibrate-
contrast

fair round-trip calibrate contrast for
rectication

Table 4: Components in the ›rectify‹ module

4.4.6.3. libart and cairo

These two modules provide components for ren-
dering data onto a video stream, by utilizing func-
tions from the [cairographics] and [libart] libraries.

Component Status Description

checkerboard fair draw a checkerboard pattern

circle fair draw a circle

color fair produce a solid color image

plot fair plot a float list

scanline fair draw a moving scanline

drawcontour fair render contour with cairo

drawpoints fair render points with cairo

text good render a string with cairo

Table 5: Components in the ›libart‹ and ›cairo‹ modules

4.4.6.4. buffer

The buffer module contains three components for
handling of in-memory loop-buffers, as described in
5.5.3.

Component Status Description

buffer fair store into a loop buffer

delay fair delay using a loop buffer

player fair play from a loop buffer

Table 6: Components in the ›buffer‹ module

28

4.4.6.5. pixbuf

Some simple compositing methods are implemented
in the pixbuf module, utilizing the GdkPixbuf library
contained in [GTK]. Compare section 5.5.2.

Component Status Description

copy good crop a part of image as GdkPixbuf

fixate fair scale a variable GdkPixbuf to a fixed
size

imagesrc fair load images from disk

paste fair paste a GdkPixbuf on image

Table 7: Components in the ›pixbuf‹ module

4.4.6.6. Miscellaneous components

Finally, components that implement some function
directly, without using an external library, are placed
in the misc module. Table 8 also contains some
components for recording and playing back video
using [FFMpeg], and the [mesapaste] component
using the [mesa] OpenGL renderer for simple alpha
compositing.

Component Module Status Description

ffplay ffmpeg good simple video player
using ffmpeg

ffrecord ffmpeg good simple video recorder
using ffmpeg

mesapaste gl fair compositing using
mesa

i420split y800 good split I420 into three
Y800

rgbasplit y800 fair split RGBA into four
Y800

rgbsplit y800 fair split RGB into three
Y800

invert misc good invert image

move misc good move position of
variable video

setalpha misc fair set alpha value to a
fixed value

settle misc good wait until video has
settled to black

trackpoints misc fair naive point tracker

tracker tracker good simple sequential scan
labeling blob tracker

Table 8: Miscellaneous components

29

5. Application Multiple methods of tracking a human body in space
have been developed19. I am applying only vision-
based techniques, both because of their limited
hardware requirements (they can be performed using
only commodity hardware) and because I expect
techniques based on purely visual properties to
progress strongly due to further increases in
processing power of standard workstations and new
software algorithms that are being developed.

It should be noted that I have developed the
rectification algorithm (5.1), some of the contour
processing (5.4) and the buffering methods (5.5.3) by
myself, while the algorithms mentioned in 5.2 and
5.3, and the method of finding contours (5.4) are
based on the OpenCV library.

19 Compare [Paradiso97]

30

Image 6: Original image perceived by the camera, as used for the
demonstrations of rectification below.

5.1. Rectification
One of the requirements of the performance setup
(6.2.1) is to be able to analyze performer motion in a
stage scene that is lit by a single frontal video
projector. To allow calculating a meaningful dif-
ference between the image the computer projects
unto the scene and the image perceived by the (fixed)
camera watching the scene, I have to deal with the
spatial distortion imposed by the positions of
camera, projector and screen.

I have developed a simple rectification method to
restore the original planar production image from its
distorted appearance on the camera image. In the
experiments throughout the project, this method
prove to be relatively exact, and robust to even
extreme camera angles. It integrates all distortions
imposed by position and properties of the involved
devices by applying a very high-level ›round-
trip‹-calibration method.

5.1.1. Displacement Maps

The basis for the rectification method is the concept
of a two-dimensional displacement map, where for

each output pixel the originating position in the
original image is being stored. Displacement maps
are commonly used for applying spatial distortions
to an image, for ›distortion mirror‹ effects or in
audio visualization, as they provide an efficient
means to apply a pre-calculated distortion to a video
stream.

5.1.2. Calibration

In the calibration process, the display device is fed
with a simple white rectangle that moves along the
screen on a rectangular matrix. The camera signal is
analyzed as to where that rectangle appears on the
final image, and the relation between produced and
received position is stored to produce a low-
resolution displacement map.

Furthermore, the borders along this displacement
map are extrapolated to accommodate for the fact
that we cannot detect the rectangle's position reli-
ably near the image borders. It is then scaled to the
size of our production image using bicubic inter-
polation.

31

5.1.3. Forward

Applying the resulting displacement map to the
camera signal produces a rectified image that re-
sembles our original production image (Image 7),
given that no object interferes with the feedback
loop. Thus, the rectified image can be compared to
the original image (Image 8) and, given some toler-
ance to noise due to imprecision of the algorithm
and video signal transmission, an object placed in
the projector beam and its shadow can be made out.

32

Image 8: Image 7 compared to the original patternImage 7: Rectified version calculated from camera image

5.1.4. Backward

Once the rectification is calibrated, it can also be
reverted to compare a distorted version of the orig-
inal image with the camera signal (Image 9 and 10).
This way, we can also detect parts of the object that
are lit by the projector beam but do not appear in
front of the screen from the camera's perspective. As
the problem of inverting the displacement map
clearly exceeded my mathematical understanding,
the reverse (de-)rectification remains imprecise.

33

Image 9: Derectified version of the checkerboard pattern Image 10: Image 9 compared to camera image

5.1.5. Contrast

In addition to the heavy spatial distortion, the pro-
jector/camera combination imposes another trans-
formation on the original image: the colors and
brightness are modified. I have introduced another
calibration step (contrast calibration) to compensate
at least a little bit for that fact. The contrast
calibration routine finds the resulting brightness
values for a black and a white version of each pixel
projected and stores these values in a luminance map
for the rectification process to accommodate for the
shift in contrast. While that routine is again rather
primitive and imprecise, and subject to brightness
spill from neighboring pixels, the resulting image
clearly improved.

5.2. Binary Presence Image
The first step of basic computer vision is often to
calculate a binary image representing the probability
of some object being present in the signal, where
white pixels represent presence and black pixels
absence of an object. Given a fixed camera, no (or
little) occlusions and relatively stable lighting
conditions, the calculation of such an image is quite
simple.

5.2.1. Average/Difference/Threshold

The basic idea is to have an image of the (object-less)
scene background, and compare the current frame of
the video signal to that image pixel-by-pixel. The
absolute difference between two pixels on the same
position represents the likelihood of an object
occupying that pixel.

34

To get the background image, one could shoot a
single frame of the scene when no objects (or people)
are inside the picture and use that as a reference
frame. This method is highly susceptible to chang-
ing lighting conditions and even very small changes
in camera position, though, so a better method is to
use a running average of the video stream to
calculate a hypothetical background image (Image
11). While that method is vulnerable to people that

don't move much (they will gradually fade into the
background image, and once they move away will
leave a false positive behind), an acceptable
compromise can usually be found.

Once an image of the background is available, we can
compare it to the current video frame to produce a
greyscale probability image (Image 12), which can
subsequently be thresholded to give the binary
image we set out for (Image 13).

5.2.2. Shadow

In the specific case of the echo & narziss perfor-
mance setup (see 6.2.1), I use an even simpler method
to find a silhouette image of the performer: a camera
pointed at the screen from a very high angle and
rectified using the process described in 5.1 will
produce an image of our original projection with the
shadow of the performer clearly visible. Given that
the performer doesn't move too close to the screen
and the image is bright enough in all areas,
calculating the binary presence image is a mere
matter of an inverse threshold.

35

Image 11: Running average of the video stream used in the
examples

5.2.3. Difference to known projection image

Again in the specific case of my performance setup, I
can apply another method to calculate the binary
image, namely by comparing the camera signal to a
de-rectified (see 5.1.4) version of the image that was
projected onto the scene, or likewise, the original
version of the projected image to a rectified (see 5.1)
version of the camera signal. The drawback with this
method is that it is computationally relatively
expensive, and results in an image where both the

performer herself and her shadow are marked. To
avoid detection of the performer's shadow with this
method, it can be used with the frontal camera and
use the silhouette detected by the angular camera to
darken those pixels in the original image that will be
occluded by the performer's shadow, before
comparing it to the perceived camera image.

36

Image 12: Difference of background and current image Image 13: Thresholded difference image

5.3. Further pixel-based analysis 5.3.1. Image Moments

Once the video stream is processed to produce a bi-
nary presence image like described above, we can
calculate image moments, global statistical values
about the analyzed picture that describe some basic
features of the perceived object, namely its centroid
(or ›center of gravity‹), area, global orientation and
extents along the principal axes. These are sig-
nificant, traceable parameters that allow for a com-
plex coupling with sound and image production.

37

Image 14: Centroid, principal axes and extents (scaled) marked

5.3.2. Motion History Image

A Motion History Image (MHI) is a floating-point
image that is continuously updated from a binary
image. All pixels that are positive in the binary im-
age will be set to the current ›timestamp‹ value in the
MHI. Clipping a range of values from the MHI and
scaling it to 8-bit values gives a grayscale image like
Image 15.

5.3.3. Edge Detection

Various methods of finding edges in a (binary) image
exist. Image 16 shows the result of the Canny edge
detector applied to a binary image of the sample
sequence. Some ›noise‹ (eg., tracing of shadow lines
along the arm in the example image) can be reduced
by dilating and eroding the picture before running the
edge detection to reduce holes in the silhouette. In
the resulting image we can easily find connected
components and contours, as described below.

38

Image 15: An example MHI Image 16: A result image produced by the Canny edge detector

5.4. Contour

All vision algorithms described so far process the
video stream in its digital representation as a two-
dimensional pixel array. I made a (successful) at-
tempt to exceed that level with the detection and
processing of contours.

Starting from a binary image, the contour finding
method implemented in OpenCV applies an edge
detection algorithm, and scans the image left-right,
top-bottom for the first non-zero pixel. From there,

all connected pixels are followed to produce a path
describing the connected component. On the way,
edge pixels are zeroed, so a further run finds another
component, until the edge image consists only of
zero pixels.

From the resulting list of contours detected, I choose
the largest for further processing and disregard the
rest (I am expecting just a single human body in the
image). The data describing this contour is stored in
a variably-width floating-point image with a height
of exactly two lines, as shown in Table 9:

x1 x2 ... xn

y1 y2 ... yn

Table 9: Layout of a contour image

The resulting image can be manipulated using the
same components that process normal images (al-
though the effects will of course be different). For
example, Image 18 shows the results of a gaussian
blur applied to the contour image with horizontal
blur levels of 1, 10, 30, 50, 75 and 100, respectively.

39

Image 17: Video frame with detected contour of performer

5.4.1. Curvature

An interesting property about contours is that of its
curvature. There are multiple definitions of cur-
vature20, I calculate a first derivation of the contour
by calculating the angles between two successive
contour points, then derive the curvature by sub-
tracting each pair of adjacent angles. Both deriva-
tions are appended to the bottom of the contour
image, to produce an image layout as depicted in
Table 10.

x1 x2 ... xn

y1 y2 ... yn

θ 1 θ 2 ... θn

c1 c2 ... cn

Table 10: Layout of a contour image with curvature data

5.4.2. Local maxima of absolute curvature

I use the calculated curvature to derive a set of points
of interest for control of the audio production.
Originally, I thought that cutting the contour in
parts (as to separate torso and limbs of the per-
former) would be trivial, but sadly, it is not. After

20 See [Fisher04]

40

Image 19: Curvature along the performer's contour

Image 18: Gaussian blur applied to a contour image

reviewing some current research on parsing con-
tours21, I resorted to a much simpler approach that
still produces traceable results: I find the weighted
local maximums and minimums between zero
crossings of the curvature plot. Considering Image
20, three maximums and three minimums clearly
stand out. The first minimum and the last maximum
are disregarded, as the curve does not cross zero
before, respectively after the maximum.

Calculating an average over the area of the hub (or
dent, respectively) gives a weight of the detected
interesting point. When I mark the points with

21 Compare [Azarbayejani96]

rectangles representing their weight on the original
contour, I get the image depicted in Image 21.

41

Image 20: Plot of the smoothed curvature along the primary
contour of Image 13

Image 21: ›Points of Interest‹ marked on the original contour

5.5. Synthesis

5.5.1. cairographics

After initial experiments with libart22, I later
switched to the cairographics library23 for drawing
vector graphics and text onto the video stream. Cairo
seems to evolve to a general-purpose two-dimen-
sional drawing library, very much like what OpenGL
is for three-dimensional graphics. While I'm
currently using only the internal software renderer,
the development of various back-ends for cairo
(OpenGL, PostScript, XRender) is in progress, which
gives a promising perspective for the future. Indeed,
cairo is being considered as integration as the low-
level 2D rendering library for both major free desktop
environments (GNOME and KDE).

Cairo already gives beautiful results with acceptable
performance. The contours and moments infor-
mation shown in the Illustrations above have been
rendered using a few simple components integrating

22 [libart]

23 [cairographics]

cairo24, and it will be used intensively in the second
act of the performance (compare 6.2.3.2).

5.5.2. OpenGL and GdkPixbuf

In addition to rendering with cairo, some initial ef-
forts of using both OpenGL and the GdkPixbuf
library have been undertaken. Especially the use of
OpenGL promises interesting results in the future,
yet for the use in this project, is limited to using the
Mesa software-rendering library for simple alpha
compositing (in the mesapaste component.

The GdkPixbuf25 library has been tried out for some
simple operations (matte extraction, alpha com-
positing and scaling), but as it doesn't support full
alpha transparency yet and is also relatively slow, for
most of these better variants have been found later
(matte extraction is done using functions of the
OpenCV library; alpha compositing with Mesa; for

24 Obviously, as these are rendered as bitmap graphics,
they don't turn out as beautiful in print. Using the
PostScript back-end of cairo would have been
appropriate for the printed versions, but was not a
reachable goal within the given timeframe.

25 Part of [GTK]

42

scaling of variable video, in the fixate component,
GdkPixbuf is still used but will be replaced by more
efficient algorithms in the future). As an exception, I
use GdkPixbuf for loading of compressed image
formats, as it supports a wide variety of those
(imagesrc component).

5.5.3. Buffering in RAM

A large set of possibilities for interesting image ef-
fects is opened up when video is not only available
from compressed format on the hard disk, or as a live
stream from a camera, but buffered in RAM in a raw
(uncompressed) representation, as access to video
stored in such a way is very fast. Two basic
components for doing so have been developed: buffer
and player. Both access the same structure that
manages a loop-buffer of frames, where the buffer
component stores every frame it receives, and the
player re-inserts these frames into the processing
pipeline according to its own speed and direction.
Multiple players can be connected to the same
memory buffer, and thus they can feed other
compositing elements with different points of time
in the same video stream. Some ad-hoc effects based

on buffering video in RAM will be presented during
the third act of the performance (6.2.3.3), mostly by
varying the playback speed of two player components
feeding a difference element. They will, for example,
amplify and visualize the variation of two iterations
of the same move performed by the dancer.

5.6. Outlook
Obviously, only a small subset of both the algorithms
found in the OpenCV library and computer vision
research in general could be integrated into Warsaw
within the limited time of the project period.
[Intel01] and [Fisher04] describe a wealth of
techniques that promise further interesting results.
[Dimitrov] presents an algorithm for finding skeletal
graphs from binary images that could provide
interesting data also within a near-real-time context.
[Singh99] proposes the »short-cut rule« for parsing
silhouettes that could imitate the human ability to
quickly grasp important features of two-dimensional
contours. Finally, many techniques are being
developed for deriving depth information from
stereo cameras, for example the »spfinder« system
presented by [Azarbayejani96].

43

6. Performance 6.1. Theme

6.1.1. Narrative

I have chosen the ancient Greek legend of Narcissus
and Echo as the basic narrative to interpret within
this project. I will sketch out the story based on
Ovid's version26.

Jupiter, the highest of gods, orders the forest nymph
Echo, who is blessed with the gift of conversation, to
distract his wife while he is ›visiting‹ the nymphs.
Indeed, Echo succeeds in holding back Juno from
catching her husband in flagranti, by engaging her
in a debate about the proper way of organizing a
wedding. When Juno finds out what's going on, she
is understandably enraged, and punishes Echo with
the curse that makes her name known to us today:
from then on, she shall only be able to repeat the last
words spoken to her.

Like all other nymphs, Echo is in love with Narcis-
sus. She follows him like a shadow when he is
hunting in the forests, waiting for him to speak a
word so she can reply and try to seduce him. When

26 [Ovid]

44

one day Narcissus lost his friends during a hunt, her
chance has come. Alone in the forest, Narcissus,
looking for his friends, asks »Is anybody here?« and
»Here.« replies Echo. Narcissus is confused, as he
cannot make out the source of that reply. »Come!« he
calls, and »Come!« answers Echo. »Why do you avoid
me?«, Narcissus requests, and so does Echo. »Let us
be together!«27 he calls, and, happily, Echo replies
with the same. Encouraged by these last words, Echo
leaves her hide and embraces Narcissus, who is
disgusted by such stormy passion, and states: »Leave
me be, wench! I would rather die than let you have
power over me!«. And Echo, disappointedly, replies
nothing but »you have power over me!« She retreats
to the mountains where she fades to stone until only
her voice remains.

Not much later, Narcissus finds his own curse in the
form of a beautiful pool, where he falls in love with
his own reflection. He does not realize it is only an
image of himself he sees in the water, and gets
confused because that other being seems to reply to

27 Ovid uses the nicely ambivalent »coeamus« here, which
translates to »fit together; have sexual intercourse;
gather; meet; assemble; unite«

his smiles and flirts, yet evades whenever he tries to
embrace or kiss it. So at some point he understands
his error, and in a surge of desperation, beats his
chest until he dies. His last words, »Oh, boy, whom I
loved in vain. Farewell!«, are repeated by the now
disembodied Echo. The nymphs mourning over the
death of narcissus is also echoed, as they look for his
body but only find a yellow-white flower which from
then on carries his name.

6.1.2. Interpretation

Unlike most interpretations of that narrative (of
which there are many to find28), my focus is not so
much on the character of Narcissus, but on that of
Echo. It becomes immediately clear that Echo not
merely repeats the last words uttered to her, but by
choosing exactly which words, enters a dialog. Even
with her curse, she retains her old gift of being able
to converse with anybody about anything. The tale is
not only about what Freud later dubbed Narcism, the
blind self-love, but just as much about the variation
inherent in any repetition, about the changes
introduced with every iteration. Echo is a mirror of

28 [Orlowsky92]

45

sorts, but a magic mirror that will exaggerate and
interpret any object placed in front of it.

Narcissus, at first, regards his own reflection as the
image of an external entity. The distortion and
variation imposed by the noise of the medium (the
distortion caused by movement of the water surface,
or the modification of the voice by the reflecting
surfaces) cause the subject to misinterpret the true
source of his perception and regard the reflection of
his own actions as answers from a different being.

This is analogous to a behavioral pattern to be found
with current user interfaces29: people seem to regard
the computer as a person, a being with its own free
will. Whenever ›it doesn't do as we tell it to‹, the
computer is attributed a ›bad day‹, or even ferocity.
Rarely do we realize how precisely and stubbornly
the computer interprets our actions, and that an
error is only very rarely caused by a real bug in the
software (and never by ferocity on the computer's
side), but much more often by a misconception on
the user's side, a misunderstanding between the user

29 [Nass00]

and the interface designer.30

To turn things around, Narcissus is caught in a
feedback loop like a computer stuck in an infinite
processing loop: the object of his love loves him
back, but yet the love cannot be fulfilled. »A novel
wish for a lover: I wish, what I love, would not be
with me.«31 Like the classic video feedback loop of a
camera pointed at a screen displaying the same
camera's signal, all ›error‹, all noise inherent in the
signal transmission is amplified and exaggerated
until the signal itself is completely lost. In the case of
Narcissus, his stigma of being incapable of love to
anyone but himself, is amplified and amplified again
until it becomes overpowering, until the signal itself
disappears and only the error remains.

6.1.3. Representation

Following this interpretation of the myth, I chose to
unify the ›characters‹ of Echo and the pool in one
entity: the computer systems used in the per-

30 To be fair, we have to add that these misconceptions are
mostly caused by bad interface design, and not by any al-
leged stupidity on the user's side.

31 Narcissus in [Ovid]

46

formance. The human performer will act the role of
narcissus, the human being confronted with his own
reflection. All audio and video material used in the
performance will originate from that performer. The
software systems described above will interpret the
performers actions in visuals and sound, project
these interpretations back onto the performer and
start over again.

Yet, as I have described, Echo is not a 'stupid' re-
peater: she still has her own free will, and inserts her
disembodied being into the loop. This is where the
performers not present on the stage come into play.
First, we had of course our artistic influences during
the development of the systems itself, by using the
information-processing abilities of the computers to
reinterpret the live signal32. Furthermore, we will
actively adjust parameters and function of the
systems during the performance itself. We'll thus be
doing just what Echo does in the classic narrative,
when she clearly has a choice as to which last words
she will repeat, and thereby enters a dialog.

32 After all, the most simple realization of my
interpretation could have been achieved with a simple
audiovisual feedback loop.

6.2. Realization

6.2.1. Technical Setup

After juggling with various possibilities for the
technical setup of the performance, I decided to go
for a relatively simple combination of a frontal
projection, two cameras and two processors, as
shown in Image 22. Camera one, watching the screen
from a high angle as to avoid direct exposure of the
performer, delivers its signal to the first computer
that will perform the basic analysis parts of the
setup.

47

Image 22: Overview of the technical performance setup

It will derive a binary image displaying only the
performer's shadow, as described in 5.2.2, and cal-
culate image moments (5.3.1) and contour (5.4) to
send those to both the musicians for audio synthesis
and to the second computer for incorporation into
the image generation. I will modify live parameters
of the synthesis and analysis on the two processors
with controls (4.3.3) from my laptop.

6.2.2. Participants

I have invited three artists for cooperation within
this project. Alexandra Janeva works as a
professional dancer and choreographer mainly in
France, Croatia and Switzerland. The experience of
watching one of her performances in Zagreb in 2001
has triggered my wish to increase and intensify my
cooperation with professional dancers, so she
became my obvious first choice for involvement into
this project.

Oliver Macklott and Astrid Schwarz have both
studied electroacoustic music at the University of
Music in Vienna. Together they perform in various
concert situations and manage to create alluring
listening experiences with their unique use of new

audio technologies. Some early experiments in
exchanging data to synchronize video analysis with
audio production and details of that audio
production with video generation have proven
promising, so they also became an obvious choice
for integration within this project, to continue and
extend those early experiments and hopefully
together approach a level of exchange that is not only
fertile to us, but also able to inform the audience
about the possibilities of such coupling.

6.2.3. Dramaturgy

In terms of choreography and general composition,
the actual event itself will remain necessarily

48

Image 23: Dramatic composition

improvised33. Nevertheless, I have, in dialog with
musicians and performer, developed a simple dra-
maturgy to give the involved artists (including
myself) a ›canvas‹ and a means of general orientation
for the live play. This dramaturgy is divided into four
major parts, as depicted in Image 23. It's description
here remains vague, as details of the realization are
subject to improvisation and rehearsal shortly before
the performance.

6.2.3.1. Introduction

At the start of the performance I present a short
introduction to the storyline in textual form on the
projected image. It introduces Echo's background
and the story of her curse.

6.2.3.2. Cognition

The second act displays the encounter of Echo and
Narcissus, where Echo falls in love and is denied.
Narcissus (the dancer) enters the stage, which is
plainly lit in a natural green, to represent the forest

33 This is not a bad thing, as one of the basic ideas driving
this project was the development of a generic toolkit
that allows for just this kind of improvisation.

setting, making his shadow clearly visible. Echo
appears in the form of initially subtle and then in-
creasingly complex silhouette representations of the
dancer (Echo chasing Narcissus ›like a shadow‹) that
interfere with the real shadow. Technical displays of
the analysis are projected onto and next to the
performer, approximating her outline at first
roughly then with increasing precision.

The coupling of performer motion to sound should
become obvious, and with increasing display of
analysis data, peaks in a directly perceivable inter-
action. While initially interested, confused and cu-
rious, Narcissus strongly rejects Echo's approach at
the peak of this act, causing her to retreat (images
become less clear, finally disappear into a plain color
again).

6.2.3.3. Abstraction

The third act of the performance tells the part of the
story where narcissus is at the pool. The shift from
the embodied Echo involved in audible conversation
to the lifeless water reflecting the visual image of
Narcissus is exemplified by the fact that visuals now

49

become less stylized and directly use images of the
performer itself.

Initially, these are subtle and evasive; Narcissus falls
in love with his image without realizing it is his own
reflection; the dancer dances with herself. As Narcis-
sus starts to realize what happened, the images of the
performer are projected back onto herself, things get
increasingly complex and feedback-like, represent-
ing Narcissus' struggle with himself. Analysis data
becomes less precise in this setting, so does their
coupling to sound, and the music, like the images,
becomes increasingly chaotic. All involved parts
culminate in a furious feedback until all signal is lost
and only white noise remains. Narcissus dies.

6.2.3.4. Imprint

The last act uses material gathered during the second
and third part, to replay the whole performance in
reverse order without the performer interacting, a
repetition and variation of the story, a quiet, calm
epilogue, representing the nymph's mourning and
Echo's echo of the same, and the futile search for
Narcissus' body.

50

7. Summary 7.1. A Generic Toolkit
As described, I have developed two libraries, Warsaw
and Pakt, that interface with the Open-Source media
processing platform ›GStreamer‹ from two angles:
Pakt integrates GStreamer and other GObject-based
libraries to allow complex interaction with a running
processing pipeline on a remote computer; Warsaw
allows easy integration of signal processing libraries
into GStreamer and development of new algorithms
within the framework. Additionally, an effort has
been taken to integrate a number of functions from
OpenCV, cairographics and other freely available
libraries into that framework.

Together, these systems comprise a flexible and ex-
tensible toolkit that allows for complex setups en-
abling performances that integrate image analysis
and synthesis, communication with external pro-
cessing systems and live interaction from multiple
human performers.

Other applications of the same tools could include
interactive and reactive art installations, VJ perfor-
mances, and last but not least research in the field of
human-computer interaction.

51

7.2. Improvisation and Performance
One of the focal points of the toolkit development
was to allow improvisation on all levels: While
usually dance performances involving computers
require a lot of rehearsal and practice from both
performer and engineers, the methods involved in
this project are relatively robust to changing con-
ditions and allow for free improvisation on the
dancer's side.

Additionally, the developed components empower
me to involve directly into the performance using
various controls, and thus take part in the impro-
visation. Communication with the audio systems
has been extended to enable complex coupling of
video analysis and synthesis with audio production.
While the actual set of parameters communicated is
still relatively limited, the ground has been prepared
for increasing cooperation.

Finally, the project involved various details of
preparing and managing a contemporary dance
performance involving three external artists and a
significant amount of technology.

7.3. Freedom and Constraints
I have enjoyed very much the freedom to work on a
set of my own ideas for such a long period of time,
and I think I have shown that the lack of detailed a-
priori definition of the expected results does not
necessarily mean that a work is less focused or in-
tense.

As within most projects, the main struggles were not
to be found with the development of a vision, but
with its realization. I think I have extended my tools
to a degree where

1. they allow me to continue development in the
area of performative and installation arts with a
promising perspective, and

2. it makes sense to publish these tools as Open-
Source software for application by others.

Apart from the technical results of this project, there
is still one experiment whose outcome is yet to be
seen: Does a dance performance on this experimental
level have the ability to enrich both participants and
audience?

52

7.4. Future Directions
To me, there is not much question about how to
continue in the direction suggested by the project.
First, I hope I can still work on projects like this even
when I have to care about my income myself in a
commercial background. Models for my own
professional practice and private live that enable this
will have to be developed. Second, the developed
tools are all still in a prototypical stage, and need
further stabilization, extension and experi-
mentation. Many promising computer vision and
graphic synthesis techniques remain unused.

One of the most important lessons learned within
this project though, is that my work seems much
more rewarding if I open it up to more intense co-
operation. The work with the involved participants
was good, but still rather limited, and should be
intensified. Additionally, I hope to receive important
feedback from others using the developed software
for implementing their own ideas.

53

8. References

8.1. Pakt/Warsaw dependencies
[cairographics] Cairo vector graphics library, Version 0.1.22 (MIT
License): http://www.cairographics.org/

[gnet] Gnet network library, Version 2.0.5 (GNU LGPL):
http://www.gnetlibrary.org/

[gob2]The GObject Builder, Version 2.0.6 (GNU GPL):
http://www.5z.com/jirka/gob.html

[GStreamer] GStreamer Open Source Multimedia Framework
and associated plug-ins package, Version 0.8.0 (GNU LGPL):
http://gstreamer.freedesktop.org/

[GTK], [GObject] GTK+ widget toolkit and associated
glib/GObject support libraries, Versions 2.4.1 (GNU LGPL):
http://www.gtk.org/

[libart] libart vector graphics library, Version 2.3.14 (GNU LGPL):
http://www.levien.com/libart/

[libgnomecanvas] GNOME2 Canvas Library, Version 2.0.5 (GNU
GPL):
ftp://ftp.gnome.org/pub/gnome/sources/libgnomecanvas/2.0/

[libxml2] libxml2 XML/HTML processing library, Version 2.6.3
(MIT License): http://xmlsoft.org/

[libxslt] The XSLT C library for GNOME, Version 1.1.1 (MIT
License): http://xmlsoft.org/XSLT/

[mesa] Mesa3D Software Rendering Library, as part of XFree 4.3.0
(XFree copyright, MIT-style license):

http://mesa3d.sourceforge.net/

[OpenCV] Intel Open Source Computer Vision Library, Version
0.9.5 (Proprietary Intel Open Source License):
http://www.intel.com/research/mrl/research/opencv/

[spidermonkey] SpiderMonkey JavScript-C engine, Version 1.5
(Mozilla Public License/GNU LGPL):
http://www.mozilla.org/js/spidermonkey/

8.2. References to books and papers
[Azarbayejani96] Azarbayejani, Ali, Wren, Christopher,
Pentland, Alex (1996): Real-Time 3-D Tracking of the Human
Body [Electronic version]. M.I.T. Media Laboratory Perceptual
Computing Section Technical Report No. 374, as appearing in
Proceedings of IMAGE'COM 96, Bordeaux, France, May 1996.

[Dimitrov] Dimitrov, Pavel, Phillips, Carlos, Siddiqi, Kaleem (?):
Robust and Efficient Skeletal Graphs [Electronic version].
Retrieved January 28, 2004 from
http://www.cim.mcgill.ca/~shape/publications/ CVPR00.ps.gz

[Fisher04] Fisher, Robert B (Ed.) (2004): CVonline: The Evolving,
Distributed, Non-Proprietary, On-Line Compendium of
Computer Vision. Retrieved January 19, 2004 from University of
Edinburgh, School of Informatics Web site:
http://homepages.inf.ed.ac.uk/rbf/CVonline/

[Golovchinsky95] Golovchinsky, Gene (1995): Subverting
Structure: Data-driven Diagram Generation. Retrieved from:
http://www.imedia.mie.utoronto.ca/people/golovch/publications
/vis95/toc.html

[Intel01] Intel Corporation (2001): Open Source Computer Vision
Library: Reference Manual. Retrieved November 21, 2003 from:

54

http://opencvlibrary.sourceforge.net/

[Nass00] Nass, Cliff (2000): How People Treat Interfaces Like
People: Social Psychology and Design. University of Washington
Video Lecture, as retrieved from
http://www.uwtv.org/programs/displayevent.asp?rid=602

[Orlowsky92] Orlowsky, Ursula, Orlowsky, Rebecca (1992):
Narziß und Narzißmus im Spiegel von Literatur, Bildender Kunst
und Psychoanalyse: vom Mythos zur leeren Selbstinszenierung.
München, Fink.

[Ovid] Publius Ovidius Naso: Metamorphosen. Übertragen und
herausgegeben von Erich Rösch. 11. Aufl., München und Zürich,
1988. Nach: [Orlowsky92].

[Paradiso97] Paradiso, J.A., Sparacino, F. (1997): Optical Tracking
for Music and Dance Performance [Electronic version].
Presented at the Fourth Conference on Optical 3D Measurement
Techniques, ETH Zürich, September 1997.

[Raymond00] Raymond, Eric S. (2000): The Cathedral and the
Bazaar [Electronic version]. Retrieved October 4, 2003 from
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/

[Singh99] Singh, Manish, Seyranian, Gregory D., Hoffman,
Donald D. (1999): Parsing silhouettes: The short-cut rule
[Electronic version]. Perception and Psychophysics, 61: 636-660.

[Wilde] Wilde, Oscar: The Disciple. In: The Oxford Anthology of
English Literature. Vol. II. 1800 to the Present. General Editors:
Frank Kermode and John Hollander. New York, London, Toronto:
1973. From [Orlowsky92].

8.3. Web Links
[Combustion] http://www4.discreet.com/combustion/

[DirectX] http://www.microsoft.com/windows/directx/

[EyeCon] http://eyecon.palindrome.de/

[FFMpeg] http://ffmpeg.sourceforge.net/

[Houdini] http://www.sidefx.com/products/houdini/index.html

[Isadora] http://www.troikatronix.com/isadora.html

[Jitter] http://www.cycling74.com/products/jitter.html

[Keyworks] http://www.keyworx.com/

[LGPL] http://www.fsf.org/licenses/lgpl

[libdm]
http://www.sgi.com/software/irix/tools/digitalmedia.html

[MAS] http://www.mediaapplicationserver.net/

[MediaKit] http://open-beos.sourceforge.net/tms/team.php?id=5

[Palindrome] http://palindrome.de/

[Reaktor]
http://www.nativeinstruments.de/index.php?reaktor4_us

[Rockeby] http://homepage.mac.com/davidrokeby/vns.html

[Sony] http://www.eyetoy.com/

[TroikaRanch] http://www.troikaranch.org/

55

